鸡兔同笼问题解法,小升初数学鸡兔同笼问题解法?

  • 生活
  • 2023-05-05 17:18

大家好,关于鸡兔同笼问题解法很多朋友都还不太明白,今天小编就来为大家分享关于小升初数学鸡兔同笼问题解法的知识,希望对各位有所帮助!

鸡兔同笼问题解法

鸡兔同笼问题解法可以使用抬脚法解题。

抬脚法解题就是让要让笼子里面的鸡兔都抬起两只脚。鸡没有脚碰到地面,兔子也少了2条腿碰到地面,那也就是说,笼子里的所有个体都少了2条脚,那现在脚碰到地面的也只有兔子了。

也就是说,剩下的24只脚中,都是只有2只脚接触地面的兔子,可以进行反推。把兔子的数量已经算出来,那鸡的数量也自然可以算出来。

《孙子算经》用算术***来解:

脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。这种解法虽然直接而自然,也很合乎逻辑,但是却不容易理解。

原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔1/2的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。

这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。

用列方程的***,这个问题就更容易解决了。设鸡有x只,兔有y只,则根据题意有:x+y=35,2x+4y=94,解这个方程组得x=23,y=12。

鸡兔同笼问题怎么解

解题***:假设法,方程法,抬腿法

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数。有94只脚。问笼中各有多少只鸡和兔?

假设法

假设全是鸡:2×35=70(只)

鸡脚比总脚数少:94-70=24(只)

兔子比鸡多的脚数:4-2=2(只)

兔子的只数:24÷2=12(只)

鸡的只数:35-12=23(只)

方程法

一元一次方程

解:设兔有x只,则鸡有(35-x)只。

解得

鸡:35-12=23(只)

解:设鸡有x只,则兔有(35-x)只。

解得

兔:35-23=12(只)

答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

抬腿法:

***一

假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

***二

假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是***坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

***三

我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。

鸡兔同笼各种解法

鸡兔同笼的解法有假设法、公式法、方程法等几种***。

题目示例:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?

1、假设法

(1)假设全是鸡:2×35=70(只)

鸡脚比总脚数少:94-70=24(只)

兔子比鸡多的脚数:4-2=2(只)

兔子的只数:24÷2=12(只)

鸡的只数:35-12=23(只)

(2)假设全是兔子:4×35=140(只)

兔子脚比总数多:140-94=46(只)

兔子比鸡多的脚数:4-2=2(只)

鸡的只数:46÷2=23(只)

兔子的只数:35-23=12(只)

2、一元一次方程法:

(1)解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=94  解得x=12

鸡:35-12=23(只)

(2)解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=94 解得x=23

兔:35-23=12(只)

所以兔子有12只,鸡有23只。

3、二元一次方程组

解:设鸡有x只,兔有y只。

x+y=352x+4y=94

解得x=23y=12

所以兔子有12只,鸡有23只。

4、抬腿法

(1)假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

(2)假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是***坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

(3)我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。

5、公式法

公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数

总只数-兔的只数=鸡的只数

公式3:总脚数÷2-总头数=兔的只数

总只数—兔的只数=鸡的只数

公式4:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数-兔总只数

公式5:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔总只数-鸡的只数

公式6:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)

参考资料来源:百度百科-鸡兔同笼

关于鸡兔同笼的问题怎么做?

鸡兔同笼的问题解法:

(1)假设法。

(2)方程法。

具体说明如下:

有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。求鸡和兔的数量。

(1)假设法:

假设全是鸡:2×35=70(只)

鸡脚比总脚数少:94-70=24

(只)

兔子比鸡多的脚数:4-2=2(只)

兔子的只数:24÷2=12

(只)

鸡的只数:35-12=23(只)

(2)方程法:

一元一次方程,设兔有x只,则鸡有(35-x)只。4x+2(35-x)=94。

二元一次方程,设兔有x只,鸡有y只。x+y=35,4x+2y=94。

扩展资料:

一元一次方程解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

(5)系数化成1。

解方程依据

1.移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;

2.等式的基本性质。

好了,关于鸡兔同笼问题解法和小升初数学鸡兔同笼问题解法的分享到此就结束了,不知道大家通过这篇文章了解的如何了?如果你还想了解更多这方面的信息,没有问题,记得收藏关注本站。

猜你喜欢